
Click to add Text CSE 301

Combinatorial Optimization

Lecture 2

Recurrence

Today’s Topic

Recurrence

Substitution Method

Recursive Method

Master Method

Akra-bazzi method

Solving homogeneous equation

Solving non-homogeneous equation

Recurrence Relations

A recurrence relation is the recursive part of a

recursive definition of either a number sequence or

integer function.

Recursively Defined Sequences

Fibonacci sequence:

{fn } = 0,1,1,2,3,5,8,13,21,34,55,…

Recursive definition for {fn }:
INITIALIZE: f0 = 0, f1 = 1

RECURSE: fn = fn-1+fn-2 for n > 1.

The recurrence relation is the recursive part

fn = fn-1+fn-2.Thus a recurrence relation for a sequence consists of an
equation that expresses each term in terms of lower terms.

Substitution method

1. Guess the form of the solution.

2. Verify by induction.

3. Solve for constants.

The most general method:

Example: T(n) = 2T(n/2) + n

• Guess T(n) = O(nlogn)

• Assume that T(n/2) <= c(n/2)log(n/2)

• Prove that T(n) <= cnlogn - by induction

Substitution method

T(n) <= 2(c(n/2)log(n/2)) + n

<= cnlog(n/2)) + n

= cnlogn – cnlog2 + n

= cnlogn – cn+ n

<= cnlogn.

Evaluate recursive equation

using Recursion Tree

Evaluate: T(n) = T(n/2) + T(n/2) + n

Work copy: T(k) = T(k/2) + T(k/2) + k

For k=n/2, T(n/2) = T(n/4) + T(n/4) + (n/2)

[size|cost]

Recursion-tree method

• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion tree method is good for
generating guesses for the substitution method.

• The recursion-tree method can be unreliable.

• The recursion-tree method promotes intuition,
however.

Recursion Tree e.g.

To evaluate the total cost of the recursion tree

sum all the non-recursive costs of all nodes

= Sum (rowSum(cost of all nodes at the same depth))

Determine the maximum depth of the recursion tree:

For our example, at tree depth d

the size parameter is n/(2d)

the size parameter converging to base case, i.e. case 1

such that, n/(2d) = 1,

d = lg(n)

The rowSum for each row is n

Therefore, the total cost, T(n) = n lg(n)

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n2:

Example of recursion tree

T(n)

Solve T(n) = T(n/4) + T(n/2) + n2:

Example of recursion tree

T(n/4) T(n/2)

n2

Solve T(n) = T(n/4) + T(n/2) + n2:

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

Example of recursion tree

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

(1)

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

(1)

n
2

n2

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

(1)

5

16
n

2

n
2

n2

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

(1)

5

16
n

2

n
2

25

256
n

2

n2

(n/2)2

…

Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

(1)

5

16
n

2

n
2

25

256
n

2

n2(1+
5

16
+(5

16)
2

+(5

16)
3

+⋯)

…

Total =

= (n2)

n2

(n/2)2

geometric series

The divide-and-conquer design paradigm

1. Divide the problem (instance)
into subproblems.

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.

Example: merge sort

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)

subproblems

subproblem size

work dividing
and combining

The master method

The master method applies to recurrences of

the form

T(n) = a T(n/b) + f (n) ,

where a  1, b > 1, and f is asymptotically
positive.

Three common cases

Compare f (n) with nlogba:

1. f (n) = O(nlogba – ) for some constant  > 0.

• f (n) grows polynomially slower than nlogba

(by an n factor).

Solution: T(n) = (nlogba) .

2. f (n) = (nlogba).

• f (n) and nlogba grow at similar rates.

Solution: T(n) = (nlogba lg n) .

Three common cases (cont.)

Compare f (n) with nlogba:

3. f (n) = (nlogba + ) for some constant  > 0.

• f (n) grows polynomially faster than nlogba (by
an n factor),

and f (n) satisfies the regularity condition that
a f (n/b)  c f (n) for some constant c < 1.

Solution: T(n) = (f (n)) .

Examples

Ex. T(n) = 4T(n/2) + n
a = 4, b = 2  nlogba = n2; f (n) = n.
CASE 1: f (n) = O(n2 – ) for  = 1.
 T(n) = (n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2  nlogba = n2; f (n) = n2.
CASE 2: f (n) = (n2).
 T(n) = (n2lg n).

Examples

Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2  nlogba = n2; f (n) = n3.
CASE 3: f (n) = (n2 + ) for  = 1
and 4(cn/2)3  cn3 (reg. cond.) for c = 1/2.
 T(n) = (n3).

Ex. T(n) = 4T(n/2) + n2/lgn
a = 4, b = 2  nlogba = n2; f (n) = n2/lgn.
Master method does not apply. In particular,
for every constant  > 0, we have n (lg n).

General method (Akra-Bazzi)

The Master method is fairly powerful and results in a

closed form solution for divide-and-conquer

recurrences with a special form.

Akra and Bazzi discovered a far more general

solution to divide-and-conquer recurrences.

The Akra-Bazzi Method

The Akra-Bazzi Solution

Recurrence Relations for Counting

Often it is very hard to come up with a closed formula

for counting a particular set, but coming up with

recurrence relation easier.

Question:

Find a recurrence relation for the number of bit strings of

length n which contain the string 00.

Recurrence Relations for Counting

A: an= #(length n bit strings containing 00):

I. If the first n-1 letters contain 00 then so does the string of
length n. As last bit is free to choose get contribution of
2an-1

II. Else, string must be of the form u00 with u a string of
length n-2 not containing 00 and not ending in 0 (why
not?). But the number of strings of length n-3 which don’t
contain 00 is the total number of strings minus the number
that do. Thus get contribution of 2n-3-an-3

Solution: an = 2an-1 + 2n-3 - an-3

Q: What are the initial conditions:

Recurrence Relations for Counting

A: Need to give enough initial conditions to avoid

ensure well-definedness. The smallest n for which

length is well defined is n=0. Thus the smallest n

for which an = 2an-1 + 2n-3 - an-3 makes sense is

n=3. Thus need to give a0, a1 and a2 explicitly.

a0 = a1 = 0 (strings to short to contain 00)

a2 = 1 (must be 00).

Note: example 6 on p. 313 gives the simpler recursion

relation bn = bn-1 + bn-2 for strings which do not

contain two consecutive 0’s.

Solving Recurrence Relations

We will learn how to give closed solutions to certain

kinds of recurrence relations. Unfortunately, most

recurrence relations cannot be solved analytically.

However, recurrence relations can all be solved

quickly by using dynamic programming.

Numerical Solutions

Dynamic Programming

Recursion + Lookup Table = Dynamic
Programming

Consider a recurrence relation of the form:

an = f (a0,a1,…,an-2,an-1)

Then can always solve the recurrence relation for first n values by
using following pseudocode:

integer-array a(integers n, a0)

table0 = a0

for(i = 1 to n)

tablei = f(table0,table1,…,tablei-1)

return table

Dynamic Program

for String Example

Solve an = 2an-1 + 2n-3 - an-3 up to n=7.

Pseudocode becomes:

integer-array a(integer n)

table0 = table1 = 0

table2 = 1

for(i = 3 to n)

tablei = 2
i-3-tablei-3+2*tablei-1

return table

Dynamic Program

for String Example

Solve an = 2an-1 + 2n-3 - an-3 up to n=7:

i 2i-3-ai-3+2ai-1 = ai

0 0

1 0

2 1

3

4

5

6

7

Dynamic Program

for String Example

Solve an = 2an-1 + 2n-3 - an-3 up to n=7:

i 2i-3-ai-3+2ai-1 = ai

0 0

1 0

2 1

3 1-0+2·1 = 3

4

5

6

7

Dynamic Program

for String Example

Solve an = 2an-1 + 2n-3 - an-3 up to n=7:

i 2i-3-ai-3+2ai-1 = ai

0 0

1 0

2 1

3 1-0+2·1 = 3

4 2-0+2·3 = 8

5

6

7

Dynamic Program

for String Example

Solve an = 2an-1 + 2n-3 - an-3 up to n=7:

i 2i-3-ai-3+2ai-1 = ai

0 0

1 0

2 1

3 1-0+2·1 = 3

4 2-0+2·3 = 8

5 4-1+2·8 = 19

6

7

Dynamic Program

for String Example

Solve an = 2an-1 + 2n-3 - an-3 up to n=7:

i 2i-3-ai-3+2ai-1 = ai

0 0

1 0

2 1

3 1-0+2·1 = 3

4 2-0+2·3 = 8

5 4-1+2·8 = 19

6 8-3+2·19 = 43

7

Dynamic Program

for String Example

Solve an = 2an-1 + 2n-3 - an-3 up to n=7:

i 2i-3-ai-3+2ai-1 = ai

0 0

1 0

2 1

3 1-0+2·1 = 3

4 2-0+2·3 = 8

5 4-1+2·8 = 19

6 8-3+2·19 = 43

7 16-8+2·43 = 94

Closed Solutions

by Telescoping

1) Plug recurrence into itself repeatedly for smaller and

smaller values of n.

2) See the pattern and then give closed formula in terms

of initial conditions.

3) Plug values into initial conditions getting final

formula.

Telescoping also called back-substitution

Telescope Example

Find a closed solution to an = 2an-1, a0= 3:

an=2an-1

Telescope Example

Find a closed solution to an = 2an-1, a0= 3:

an=2an-1 =22an-2

Telescope Example

Find a closed solution to an = 2an-1, a0= 3:

an=2an-1 =22an-2=23an-3

Telescope Example

Find a closed solution to an = 2an-1, a0= 3:

an=2an-1 =22an-2=23an-3 =…

Telescope Example

Find a closed solution to an = 2an-1, a0= 3:

an=2an-1 =22an-2=23an-3 =… =2ian-i

Telescope Example

Find a closed solution to an = 2an-1, a0= 3:

an=2an-1 =22an-2=23an-3 =… =2ian-i =…

Telescope Example

Find a closed solution to an = 2an-1, a0= 3:

an=2an-1 =22an-2=23an-3 =… =2ian-i =… =2na0

Telescope Example

Find a closed solution to an = 2an-1, a0= 3:

Plug in a0= 3 for final answer:

an = 3·2n

an=2an-1 =22an-2=23an-3 =… =2ian-i =… =2na0

Blackboard Exercise for 5.1

5.1.21: Give a recurrence relation for the number of

ways to climb n stairs if the climber can take one or

two stairs at a time.

Linear Recurrences

The only case for which telescoping works with a

high probability is when the recurrence gives the

next value in terms of a single previous value.

But…

There is a class of recurrence relations which can be

solved analytically in general. These are called

linear recurrences and include the Fibonacci

recurrence.

Begin by showing how to solve Fibonacci:

Solving Fibonacci

Recipe solution has 3 basic steps:

1) Assume solution of the form an = r n

2) Find all possible r’s that seem to make this work.

Call these1 r1 and r2. Modify assumed solution to

general solution an = Ar1
n +Br2

n where A,B are

constants.

3) Use initial conditions to find A,B and obtain

specific solution.

Solving Fibonacci

1) Assume exponential solution of the form an = r n

:

Plug this into an = an-1 + an-2 :

r n = r n-1 + r n-2

Notice that all three terms have a common r n-2

factor, so divide this out:

r n /r n-2 = (r n-1+r n-2)/r n-2 r 2 = r + 1

This equation is called the characteristic equation of
the recurrence relation.

Solving Fibonacci

2) Find all possible r’s that solve characteristic

r 2 = r + 1

Call these r1 and r2.
1 General solution is an =

Ar1
n +Br2

n where A,B are constants.

Quadratic formula2 gives:

r = (1  5)/2

So r1 = (1+5)/2, r2 = (1-5)/2

General solution:

an = A [(1+5)/2]n +B [(1-5)/2]n

Solving Fibonacci

3) Use initial conditions a0 = 0, a1 = 1 to find A,B and obtain
specific solution.

0=a0 = A [(1+5)/2]0 +B [(1-5)/2]0 = A +B

1=a1 = A [(1+5)/2]1 +B [(1-5)/2]1 = A(1+5)/2 +B (1-
5)/2 = (A+B)/2 + (A-B)5/2

First equation give B = -A. Plug into 2nd:

1 = 0 +2A5/2 so A = 1/5, B = -1/5

Final answer:

(CHECK IT!)

an=
1

√5(
1+√5

2)
n

−
1

√5(
1−√5

2)
n

Linear Recurrences with Constant Coefficients

Previous method generalizes to solving “linear

recurrence relations with constant coefficients”:

DEF: A recurrence relation is said to be linear if an is a

linear combination of the previous terms plus a

function of n. I.e. no squares, cubes or other

complicated function of the previous ai can occur. If

in addition all the coefficients are constants then the

recurrence relation is said to have constant

coefficients.

Linear Recurrences with Constant Coefficients

Q: Which of the following are linear with constant

coefficients?

1. an = 2an-1

2. an = 2an-1 + 2n-3 - an-3

3. an = an-1
2

Linear Recurrences with Constant Coefficients

A:

1. an = 2an-1: YES

2. an = 2an-1 + 2n-3 - an-3: YES

3. an = an-1
2: NO. Squaring is not a linear operation.

Similarly an = an-1an-2 and an = cos(an-2) are

non-linear.

Homogeneous Linear Recurrences

To solve such recurrences we must first know how to

solve an easier type of recurrence relation:

DEF: A linear recurrence relation is said to be

homogeneous if it is a linear combination of the

previous terms of the recurrence without an

additional function of n.

Q: Which of the following are homogeneous?

1. an = 2an-1

2. an = 2an-1 + 2n-3 - an-3

Linear Recurrences with Constant Coefficients

A:

1. an = 2an-1: YES

2. an = 2an-1 + 2n-3 - an-3: No. There’s an extra term f

(n) = 2n-3

Homogeneous Linear Recurrences with

Const. Coeff.’s

The 3-step process used for the Fibonacci

recurrence works well for general homogeneous

linear recurrence relations with constant

coefficients. There are a few instances where some

modification is necessary.

Homogeneous

-Complications

1) Repeating roots in characteristic equation. Repeating
roots imply that don’t learn anything new from second
root, so may not have enough information to solve
formula with given initial conditions. We’ll see how to
deal with this on next slide.

2) Non-real number roots in characteristic equation. If the
sequence has periodic behavior, may get complex roots
(for example an = -an-2)

1. We won’t worry about this case
(in principle, same method works as before, except use
complex arithmetic).

Complication: Repeating Roots

EG: Solve an = 2an-1-an-2 , a0 = 1, a1 = 2

Find characteristic equation by plugging in an = r n:

r 2 - 2r +1 = 0

Since r 2 - 2r +1 = (r -1)2 the root r = 1 repeats.

If we tried to solve by using general solution

an = Ar1
n+Br2

n = A1n+B1n = A+B

which forces an to be a constant function ().

SOLUTION: Multiply second solution by n so general

solution looks like:

an = Ar1
n+Bnr1

n

Complication: Repeating Roots

Solve an = 2an-1-an-2, a0 = 1, a1 = 2

General solution: an = A1n+Bn1n = A+Bn

Plug into initial conditions

1 = a0 = A+B·0·10= A

2 = a0 = A·11+B·1·11= A+B

Plugging first equation A = 1 into second:

2 = 1+B implies B = 1.

Final answer: an = 1+n

(CHECK IT!)

The Nonhomogeneous Case

Consider the Tower of Hanoi recurrence (see Rosen p.

311-313) an = 2an-1+1.

Could solve using telescoping. Instead let’s solve it

methodically. Rewrite:

an - 2an-1 = 1

1) Solve with the RHS set to 0, i.e. solve the

homogeneous case.

2) Add a particular solution to get general solution. I.e.

use rule:

General

Nonhomogeneous
=

General

homogeneous

Particular

Nonhomogeneous
+

The Nonhomogeneous Case

an - 2an-1 = 1

1) Solve with the RHS set to 0, i.e. solve

an - 2an-1 = 0

Characteristic equation: r - 2 = 0

so unique root is r = 2. General solution to

homogeneous equation is

an = A·2n

The Nonhomogeneous Case

2) Add a particular solution to get general solution for an - 2an-1

= 1. Use rule:

There are little tricks for guessing particular nonhomogeneous
solutions. For example, when the RHS is constant, the guess
should also be a constant.1

So guess a particular solution of the form bn=C.

Plug into the original recursion:

1 = bn – 2bn-1 = C – 2C = -C. Therefore C = -1.

General solution: an = A·2n -1.

General

Nonhomogeneous
=

General

homogeneous

Particular

Nonhomogeneous
+

The Nonhomogeneous Case

Finally, use initial conditions to get closed solution. In

the case of the Towers of Hanoi recursion, initial

condition is:

a1 = 1

Using general solution an = A·2n -1 we get:

1 = a1 = A·21 -1 = 2A –1.

Therefore, 2 = 2A, so A = 1.

Final answer: an = 2n -1

More Complicated

EG: Find the general solution to recurrence from the

bit strings example: an = 2an-1 + 2n-3 - an-3

1) Rewrite as an - 2an-1 + an-3 = 2n-3 and solve

homogeneous part:

Characteristic equation: r 3 - 2r +1 = 0.

Guess root r = 1 as integer roots divide.

r = 1 works, so divide out by (r -1) to get

r 3 - 2r +1 = (r -1)(r 2 +r -1).

More Complicated

r 3 - 2r +1 = (r -1)(r 2 +r -1).

Quadratic formula on r 2 +r -1:

r = (-1  5)/2

So r1 = 1, r2 = (-1+5)/2, r3 = (-1-5)/2

General homogeneous solution:

an = A + B [(-1+5)/2]n +C [(-1-5)/2]n

More Complicated

2) Nonhomogeneous particular solution to an - 2an-1 +

an-3 = 2n-3

Guess the form bn = k 2n. Plug guess in:

k 2n - 2k 2n-1 + k 2n-3 = 2n-3

Simplifies to: k =1.

So particular solution is bn = 2n

Final answer:

an=A + B [(-1+5)/2]n + C [(-1-5)/2]n + 2n

General

Nonhomogeneous
=

General

homogeneous

Particular

Nonhomogeneous
+

